

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE FACULTY OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

SECOND SEMESTER EXAMINATION, 2017/2018 ACADEMIC SESSION

COURSE TITLE: CONTROL THEORY

COURSE CODE: EEE 318

EXAMINATION DATE: AUGUST, 2018

COURSE LECTURER: DR O. K. OGIDAN

TIME ALLOWED: 3 HOURS

04/1.

HOD's SIGNATURE

INSTRUCTIONS:

- ANSWER ANY <u>FIVE QUESTIONS</u>
- 2. ANY INCIDENT OF MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORIZED MATERIALS DURING EXAM SHALL BE SEVERELY PUNISHED.
- 3. YOU ARE **NOT** ALLOWED TO BORROW CALCULATORS AND ANY OTHER WRITING MATERIALS DURING THE EXAMINATION.
- 4. ELECTRONIC DEVICES CAPABLE OF STORING AND RETRIEVING INFORMATION ARE PROHIBITED.
- 5. DO <u>NOT</u> TURN OVER YOUR EXAMINATION QUESTION PAPER UNTIL YOU ARE TOLD TO DO SO.

Question 1

- a.) Define the following control engineering terms:
 - Transfer function
 - 11. Modeling
- System identification 111.
- IV. Bode plot
- ٧. Nyquist stability criterion

(5 Marks)

b.) A system has a transfer function: $G(s) = \frac{2}{(s+5)}$. Determine the magnitude and

phase of the output from the system when it of subjected to a sinusoidal input of $2\sin 3t$.

(7 Marks)

Question 2

- a.) What are the differences between open loop and closed loop system?
- b.) Outline the differences between on-off control and the Proportional Integral Derivative (PID) control (4 Marks)

c.) Write the following differential equations in the Laplace (s) domain

i.
$$F = m\frac{d^2y}{dt^2} + c\frac{dy}{dt} + ky$$
, initial value of variable $y = 0$ at $t = 0$

ii.
$$v = RC \frac{dvc}{dt} + vc$$
, initial value of variable $v = 0$ at $t = 0$

iii.
$$4\frac{d^2v}{dt^2} + 2\frac{dv}{dt} - y$$
, initial value of variable $v = 3$ at $t = 0$

iv.
$$\frac{d^2y}{dt^2} + 2\zeta w_n \frac{dy}{dt} + w_n^2 y = kw_n^2 x$$
, initial value of variable $y = 0$ at $t = 0$ (8 Marks)

Question 3

- a.) A control system has two elements in series with transfer functions of $\frac{1}{(S+2)}$ and $\frac{1}{(S+4)}$
- i.) Determine the overall transfer function
- ii.) Write a programme (to be run in the MATLAB workspace) that inputs a unit step function into the system and to output a steady state response (5 Marks)

2

b.) A system has an output y related to the input x by the differential equation:

$$\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y = x$$

What will be the output from the system when it is subjected to a unit step input? Initially both the input and output are zero.

Hint: Use the Time/Laplace domain transformation table

(7 Marks)

Question 4:

a.) What are the differences between differential equation and transfer function? (3 Marks)

b.) Outline the differences between first order and second order systems

c.) Give two examples of a second order system

(3 Marks)

(1 Mark)

d.) Give two examples of a first order system

(1 Mark)

e.) A system has a transfer function $\frac{1}{(s+5)}$. What will be its output as a function of time when it is subjected to a unit step input of 1V?

Question 5

(4 Marks)

a.) Describe the concept of stability and its importance in control systems

(2 Marks)

b.) Compare and contrast between classical and modern control systems (4 Marks)

c.) Consider a circuit with a resistor R and capacitor C in series shown in figure 1

Figure 1: circuit with a resistor and capacitor

- Determine the transfer function for the circuit in c. i.)
- What will be its output as a function of time if it is subjected to a 5V ramp ii.) input? (6 Marks)

Question 6

- a.) Describe briefly the following control action:
- i.) Proportional control
- ii.) Derivative control
- iii.) Integral control

(3 Marks)

b.) Given the basic form of a PD controller as shown in figure 2, show by proving that the controller action is given by: $(K_p + K_d s)E(s)$

Figure 2: Basic form of a PD controller

(4 Marks)

c.) Given the basic form of a PID controller as shown in figure 3, show that the controller action is given by:

$$K_{\mathsf{p}}\bigg(1+\frac{1}{T_{\mathsf{i}}s}+T_{\mathsf{d}}s\bigg)E(s)$$

Figure 3: Basic form of a PID controller

(5 Marks)

Question 7

Figure 4: Closed loop system

- a) Given the block diagram in figure 4, find the closed loop transfer function.
 (3 Marks)
- b) Determine the overall transfer function of a system with a forward path transfer function of 2/(s+2) and a feedback transfer function of 4.

(3 Marks)

- c.) Given a second order system: $G(s) = \frac{1}{s^2 + 3s + 2}$ which is subjected to a unit step input.
 - i.) Express as a function of time and
 - ii.) State if it is a stable system or not in relation to its transient (exponential) terms and give reasons for your answer (6 Marks)

Time function/Laplace transform table

Time function f(t)	Lnp'ace transform $F(s)$
1 A unit impulse	r princes and medical places and an experience of the princes of t
2 A uni: step	1.5
3 t, a unit ramp	$\frac{1}{s^2}$
4 e ^{-ar} , exponential decay	$\frac{1}{s+o}$
5 $1 - e^{-at}$, exponential growth	$\frac{a}{s(s+a)}$
6 te ^{-at}	$\frac{1}{(s+a)^2}$
$7 t = \frac{1 - e^{-at}}{a}$	$\frac{(s+a)^2}{s^2(s+a)}$
$8 e^{-at} - e^{-bt}$	$\frac{b-a}{(s+a)(s+b)}$
9 $(1-a!)e^{-at}$	$\frac{(s+a)(s+b)}{(s+a)^2}$
$10 1 - \frac{b}{b-a} e^{-at} + \frac{a}{b-a} e^{-bt}$	
11 $\frac{e^{-at}}{(b-a)(c-a)} + \frac{e^{-bt}}{(c-a)(a-b)} + \frac{e^{-ct}}{(a-c)(b-c)}$	$\frac{ab}{s(s+a)(s+b)}$ $\frac{1}{(s+a)(s+b)(s+a)}$
12 $\sin \omega t$, a sine wave	$\frac{(s-a)(s+b)(s+c)}{\frac{\omega}{s^2+\omega^2}}$
13 cos cot, a cosine wave	5 113
4 $e^{-at} \sin \omega t$, a damped sine wave	$\frac{s}{s^2 + \omega^2}$
5 c ^{-at} cos ωt, a damped cosine wave	$\frac{\omega}{(s-a)^2+\omega^2}$
	$\frac{s+a}{(s-a)^2+\omega^2}$
$\frac{\omega}{\sqrt{1-\zeta^2}} e^{-\zeta \omega} \sin \omega \sqrt{1-\zeta^2} t$	$\frac{\omega^2}{s^2 + 2\zeta \omega s + \omega^2}$
$1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega t} \sin\left(\omega \sqrt{1 - \zeta^2} t + \phi\right), \cos \phi = \zeta$	
	$\frac{\omega^2}{s(s^2+2\zeta\omega s+\omega^2)}$